A purity theorem for linear algebraic groups
نویسنده
چکیده
Given a characteristic zero field k and a dominant morphism of affine algebraic k-groups μ : G → C one can form a functor from k-algebras to abelian groups R 7→ F(R) := C(R)/μ(G(R)). Assuming that C is commutative we prove that this functor satisfies a purity theorem for any regular local k-algebra. Few examples are considered in the very end of the preprint.
منابع مشابه
Absolute cohomological purity
— GROTHENDIECK'S absolute cohomological purity conjecture is proved for Q7-etale cohomology, and for etale cohomology with 7.1 f coefficients if / is large. The proof depends on Quillen's localization theorem for algebraic K-thcory and my comparison of algebraic and topological X-thcory. In this note, I show how my theorem relating algebraic and topological K-theory yields an absolute cohomolog...
متن کاملTannakian Categories, Linear Differential Algebraic Groups, and Parametrized Linear Differential Equations
Tannaka’s theorem (cf. [19]) states that a linear algebraic group is determined by its category of representations. The problem of recognizing when a category is the category of representations of a linear algebraic group (or, more generally, an affine group scheme) is attacked via the theory of neutral Tannakian categories (see [18], [9]). This theory allows one to detect the underlying presen...
متن کاملSome Results on TVS-cone Normed Spaces and Algebraic Cone Metric Spaces
In this paper we introduce the cone bounded linear mapping and demonstrate a proof to show that the cone norm is continuous. Among other things, we prove the open mapping theorem and the closed graph theorem in TVS-cone normed spaces. We also show that under some restrictions on the cone, two cone norms are equivalent if and only if the topologies induced by them are the same. In the sequel, we...
متن کاملSelf-similar fractals and arithmetic dynamics
The concept of self-similarity on subsets of algebraic varieties is defined by considering algebraic endomorphisms of the variety as `similarity' maps. Self-similar fractals are subsets of algebraic varieties which can be written as a finite and disjoint union of `similar' copies. Fractals provide a framework in which, one can unite some results and conjectures in Diophantine g...
متن کاملOn intermediate value theorem in ordered Banach spaces for noncompact and discontinuous mappings
In this paper, a vector version of the intermediate value theorem is established. The main theorem of this article can be considered as an improvement of the main results have been appeared in [textit{On fixed point theorems for monotone increasing vector valued mappings via scalarizing}, Positivity, 19 (2) (2015) 333-340] with containing the uniqueness, convergent of each iteration to the fixe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005